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Software Engineer 10+ years (WS, Catalysts, Ada Health, Zalando)

Since 2021 AWS Solutions Architect

Specialized on SaaS, Serverless, Java and EDA

Public Speaking (Devoxx Belgium, JFokus, re:Invent)

About me
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You will get a toolbox of 
technical concepts to later 
identify the proper fit
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Fundamentals, Performance & 
Scaling
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Containers or Serverless functions
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Load Balancer
Container

Typical containerized application

HTTP server
Framework

Application code

Base Image
Runtime
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Compute

Container Runtime
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Container start up and scaling
• Initialize the container once

• Handle multiple request with the same instance (concurrently)

• Container (usually) keeps running after request processing 
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Worker Node

Container scaling
• Container based scaling (Example: Kubernetes Pods)

• Scaling based on metrics or manually (coarse grained)
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Container Container

Worker Node

Container

Container

Container Container

Container

100 req / s

105 req / s

300 req / s

• Node based scaling (if applicable) 

• Optimized Auto-Scaling tools available (Karpenter, Cluster Auto Scaler)



Containers or Serverless functions
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Containers or Serverless functions



Anatomy of a function
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Handler function

• Function written in Java, JS, Python etc.

• Input params with req. information

Configuration and Deployment

• Runtime Version: Java 11, Java 17, Java 21, Node.js (16, 18, 20)

• Memory setting, CPU Architecture (x86, ARM), Timeout up to 15 minutes

• Package as zip archive or jar and upload UI, CLI or Terraform

10240 MB128 MB



Serverless Functions
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Event

Messages 
from a queue

API request 
to endpoints

Changes in 
resource state

Application code

Serverless 
Function



Example: Simple Function URL
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HelloURLFunctionUser

https://myfunction....



Example: REST API
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GetHandler

API Gateway

PostHandler

GET

POST

com.unicorn.store.GetHandler

/unicorns

com.unicorn.store.PostHandler



Example: Queue processor

Queue or Topic Processor Function

Function instance 1

Function instance 2

Function instance 3



Example: Resizing images
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Resizer FunctionObject Storage (S3)Image file Object Storage (S3)



Example: Serverless function startup (Lambda)
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Serverless Function environment
• „Short“ lived and ephemeral

• Execution environments can be shut down after inactivity

• In Memory state will be lost – use external cache or persistent storages

Initialization Execution Execution

Execution Environments

Shutdown

Execution

Maximum of 15 Minutes

Initialization Execution Execution Execution Execution Execution



Maintenance, Security & 
Operations
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Serverless Function management
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Cloud

Serverless Function 
Service

App

High availability and scaling by design

Automatic patching of runtime (Log4Shell)

Logs, Metrics, Traces out of the box

No access to underlying hosts

Limited debugging capabilities out of the box



Container management
Multiple levels of abstractions possible

More control and debugging capabilities

Responsibility for patching OS, Base Images (CVEs)

Cluster upgrades (Kubernetes)

Platform teams provide abstractions for devs
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Auto Scaling & Load 
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Cloud
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What should devs do apart 
from writing code?
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Cost efficiency
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Serverless functions cost efficiency
Pay per use - Advantages for spikey and idle workloads

Scale to 0 = Zero cost

Efficiently experiment globally

Low management overhead – time to market
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Initialization Execution Execution Execution

Pay Pay Pay
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Container cost efficiency
Predictable pricing

Cost efficient for constant load (Own car vs. Rental car)

Optimize via instance type, size, CPU architecture (ARM64 / x86)

Additional cost for management of the infrastructure
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Running container

Pay

Running application
Worker Node

Container Container

Container

Pay per hour



Pay for instance vs. pay per 
use
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Flexibility vs. Simplicity
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Containers offer flexbility

30

Running application
Worker Node (Cloud)

Container Runtime

ContainerContainer

Running application
Worker Node (On-Prem)

Container Runtime

ContainerContainer

Running application 

Developer Machine

Container Runtime

ContainerContainer

GPU

HPC

64 GB RAM x86 3rd Gen Windows

Linux2 TB HDD

Broad choice from CNCF projects & large open source community

Flexibility in the choice of hardware



Developer Machine

Emulation

FunctionFunction

Frameworks

Functions offer simplicity
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Basic choice of Hardware (Memory, CPU architecture and temp storage)
Deploy to cloud or local emulation – no on-premise
Highly integrated with the cloud environment

Function
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Example 1: Global SaaS provider (Containers)

https://aws.amazon.com/blogs/architecture/how-shiji-group-created-a-global-guest-profile-store-on-aws/



Example 2: Serverless Webhooks (Both)

“tenant“: “Tenant1“,
“action“: “INVOICE_PAYED“
„details“: …

TENANT (PK) ACTION (SK) URL

TENANT#1 INVOICE_PAYED crm.tenant-1.com

TENANT#2 INVOICE_UPLOADED erp.tenant-2.comWebHook Function

HTTP 
Endpoint

Invoice Service
Container

Invoice Topic



Example 3: CI/CD pipeline (Containers)

https://aws.amazon.com/blogs/devops/deploy-and-manage-gitlab-runners-on-amazon-ec2/



Thank you!
Maximilian Schellhorn
LinkedIn: linkedin.com/in/maxschell/
Twitter: @maschnetwork
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What we couldn’t cover today
• Serverless Containers 

• Not entirely serverless concepts such as OpenFaaS and Knative

• Granularity of Serverless Functions (How big should a function be?)

• Advanced options such as Snapshotting and Provisioned Concurrency

• What about lock-in / Switching cost (Hexagonal Architecture)

• Other Serverless components (Databases, Queues etc.)
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Upcoming events in Tyrol

Uni Innsbruck – Tech Lab (15.03.2024)
Building Event-Driven Architectures in the cloud

Presentation + Hands-On Labs

Kitzbühel (25 – 26 April 2024)
Moderne Anwendungen in der Cloud

Presentation


