
E N G I N E E R I N G K I O S K A L P S M E E T U P I N N S B R U C K – 2 2 . 0 2 . 2 0 2 4

From containers to serverless
functions

Maximilian Schellhorn
Senior Solutions Architect
Amazon Web Services (AWS)

1

Software Engineer 10+ years (WS, Catalysts, Ada Health, Zalando)

Since 2021 AWS Solutions Architect

Specialized on SaaS, Serverless, Java and EDA

Public Speaking (Devoxx Belgium, JFokus, re:Invent)

About me

2

You will get a toolbox of
technical concepts to later
identify the proper fit

3

Fundamentals, Performance &
Scaling

4

Containers or Serverless functions

Container image

Base Image

Runtime

Framework

Application code

HTTP Server

7

Load Balancer
Container

Typical containerized application

HTTP server
Framework

Application code

Base Image
Runtime

Cloud

Networking (VPC)

Compute

Container Runtime

Orchestration

Container start up and scaling
• Initialize the container once

• Handle multiple request with the same instance (concurrently)

• Container (usually) keeps running after request processing

8

1

2 Request

Request

Running container

3 Request …

Initialization

Worker Node

Container scaling
• Container based scaling (Example: Kubernetes Pods)

• Scaling based on metrics or manually (coarse grained)

9

Container Container

Worker Node

Container

Container

Container Container

Container

100 req / s

105 req / s

300 req / s

• Node based scaling (if applicable)

• Optimized Auto-Scaling tools available (Karpenter, Cluster Auto Scaler)

Containers or Serverless functions

11

Containers or Serverless functions

Anatomy of a function

13

Handler function

• Function written in Java, JS, Python etc.

• Input params with req. information

Configuration and Deployment

• Runtime Version: Java 11, Java 17, Java 21, Node.js (16, 18, 20)

• Memory setting, CPU Architecture (x86, ARM), Timeout up to 15 minutes

• Package as zip archive or jar and upload UI, CLI or Terraform

10240 MB128 MB

Serverless Functions

14

Event

Messages
from a queue

API request
to endpoints

Changes in
resource state

Application code

Serverless
Function

Example: Simple Function URL

15

HelloURLFunctionUser

https://myfunction....

Example: REST API

16

GetHandler

API Gateway

PostHandler

GET

POST

com.unicorn.store.GetHandler

/unicorns

com.unicorn.store.PostHandler

Example: Queue processor

Queue or Topic Processor Function

Function instance 1

Function instance 2

Function instance 3

Example: Resizing images

18

Resizer FunctionObject Storage (S3)Image file Object Storage (S3)

Example: Serverless function startup (Lambda)

19

Execution
Environment

ready?

Download
Code

Start
Runtime

Initialize
Function

Code

Code
execution

Request

Code
execution

No

Yes

Create
Execution

Environment

Execution Environment

Cold start

Warm start

microVM technology

Serverless Function environment
• „Short“ lived and ephemeral

• Execution environments can be shut down after inactivity

• In Memory state will be lost – use external cache or persistent storages

Initialization Execution Execution

Execution Environments

Shutdown

Execution

Maximum of 15 Minutes

Initialization Execution Execution Execution Execution Execution

Maintenance, Security &
Operations

21

Serverless Function management

22

Cloud

Serverless Function
Service

App

High availability and scaling by design

Automatic patching of runtime (Log4Shell)

Logs, Metrics, Traces out of the box

No access to underlying hosts

Limited debugging capabilities out of the box

Container management
Multiple levels of abstractions possible

More control and debugging capabilities

Responsibility for patching OS, Base Images (CVEs)

Cluster upgrades (Kubernetes)

Platform teams provide abstractions for devs

23

Auto Scaling & Load
Balancing

Networking

Cloud

Container

Compute

Base Image
Runtime

App

Container Orchestration

What should devs do apart
from writing code?

24

Cost efficiency

25

Serverless functions cost efficiency
Pay per use - Advantages for spikey and idle workloads

Scale to 0 = Zero cost

Efficiently experiment globally

Low management overhead – time to market

26

Initialization Execution Execution Execution

Pay Pay Pay

Function

Singapore

US

Function

Function

Frankfurt

Container cost efficiency
Predictable pricing

Cost efficient for constant load (Own car vs. Rental car)

Optimize via instance type, size, CPU architecture (ARM64 / x86)

Additional cost for management of the infrastructure

27

Running container

Pay

Running application
Worker Node

Container Container

Container

Pay per hour

Pay for instance vs. pay per
use

28

Flexibility vs. Simplicity

29

Containers offer flexbility

30

Running application
Worker Node (Cloud)

Container Runtime

ContainerContainer

Running application
Worker Node (On-Prem)

Container Runtime

ContainerContainer

Running application

Developer Machine

Container Runtime

ContainerContainer

GPU

HPC

64 GB RAM x86 3rd Gen Windows

Linux2 TB HDD

Broad choice from CNCF projects & large open source community

Flexibility in the choice of hardware

Developer Machine

Emulation

FunctionFunction

Frameworks

Functions offer simplicity

31

Basic choice of Hardware (Memory, CPU architecture and temp storage)
Deploy to cloud or local emulation – no on-premise
Highly integrated with the cloud environment

Function

32

Example 1: Global SaaS provider (Containers)

https://aws.amazon.com/blogs/architecture/how-shiji-group-created-a-global-guest-profile-store-on-aws/

Example 2: Serverless Webhooks (Both)

“tenant“: “Tenant1“,
“action“: “INVOICE_PAYED“
„details“: …

TENANT (PK) ACTION (SK) URL

TENANT#1 INVOICE_PAYED crm.tenant-1.com

TENANT#2 INVOICE_UPLOADED erp.tenant-2.comWebHook Function

HTTP
Endpoint

Invoice Service
Container

Invoice Topic

Example 3: CI/CD pipeline (Containers)

https://aws.amazon.com/blogs/devops/deploy-and-manage-gitlab-runners-on-amazon-ec2/

Thank you!
Maximilian Schellhorn
LinkedIn: linkedin.com/in/maxschell/
Twitter: @maschnetwork

36

What we couldn’t cover today
• Serverless Containers

• Not entirely serverless concepts such as OpenFaaS and Knative

• Granularity of Serverless Functions (How big should a function be?)

• Advanced options such as Snapshotting and Provisioned Concurrency

• What about lock-in / Switching cost (Hexagonal Architecture)

• Other Serverless components (Databases, Queues etc.)

37

Upcoming events in Tyrol

Uni Innsbruck – Tech Lab (15.03.2024)
Building Event-Driven Architectures in the cloud

Presentation + Hands-On Labs

Kitzbühel (25 – 26 April 2024)
Moderne Anwendungen in der Cloud

Presentation

